
Sami E. Elsayed
The TJHSST Computer Systems Lab - 2025
21th of May 2025

Optimizing AI 
Workloads in 
Linux-based 
Heterogeneous 
Systems



About Me
- Senior, Lead Sysadmin at tjCSL

- Worked on Ion, Cluster, 
Workstations, & Networking

- Future Computer Engineering 
major at George Mason 
University

- Inspired by the challenge of 
optimizing AI performance on 
diverse hardware



Project Motivation
- AI workloads demand high performance, energy efficiency, and thermal 

stability.
- Heterogeneous systems (CPUs, GPUs) offer potential but face 

inefficiencies.
- Goal: Develop a unified framework to optimize AI workloads in Linux.



Background Info
- Processors

- CPU: General-purpose, sequential 
processing.

- GPU: Parallel processing, ideal for AI 
tasks.

- TPU: Made by Google, specific-purpose, 
ideal for ML/deep learning tasks.

- Heterogeneous Systems
- Combination of different processors 

types (CPU + GPU).
- AI Workloads

- Training models like neural networks, 
image classification, etc.

- Linux
- The chosen OS for this project.
- Ideal for custom performance tuning.



Processors

- General-purpose 
processor for a wide 
range of tasks.

- Few powerful cores; 
optimized for 
sequential processing.

- Great for tasks 
requiring 
single-threaded 
performance.

- Optimized for parallel 
processing, originally 
for graphics.

- Thousands of cores, 
ideal for large datasets 
and matrix operations.

- Best for tasks requiring 
high parallelism (e.g., 
deep learning).

- Specialized for deep 
learning and tensor 
operations.

- Optimized for 
high-efficiency matrix 
calculations.

- Extremely fast for 
neural network tasks, 
but limited versatility.

Central Processing 
Unit (CPU)

Graphics 
Processing Unit 
(GPU)

Tensor Processing 
Unit (TPU)



Problems
- Slow Running Time of AI 

models on conventional 
hardware.

- High Power Consumption 
during model training and 
inference.

- Thermal Management issues, 
particularly in 
high-performance settings.



Phase 1
Data Collection & Baseline Testing



Phase 1: Initial Data Collection & Baseline 
Testing

- Goal: Establish baseline performance for AI workloads on heterogeneous 
systems.

- To do:
- Run workloads (matrix multiplication, CNNs) using common frameworks 

(TensorFlow). Measuring energy consumption, running time, thermal 
performance.

- Tools: Use profiling tools like nvidia-smi (for GPU), perf, htop, and energy 
consumption monitors.



Setup

- Workstation “Duke”
- AMD Ryzen 7 17000
- dual NVIDIA 1080 Ti 

GPUs
- Ubuntu 22.04



Convolutional Neural Network (CNN)
- Type of Deep Learning model
- Highly effective for processing and analyzing data with a grid-like structure

- Popularly used for images and videos!



Phase 2
Dual Optimization Path

Path 1: Software (Workload) Optimization



Phase 2: Dual Optimization Path
Once baseline data is collected, the project will moves into two optimization 
paths:

Path 1: Software Optimization
- Goal: Optimization of the AI code to achieve better performance. Reduce 

running time, energy consumption, making AI code more efficient, not 
changing the hardware.

- To do:
- Apply algorithmic improvements to AI models (i.e layer-wise 

computation in CNNs).
- Explore AI model compression techniques (i.e pruning, quantization).



Phase 2: Dual Optimization Path (cont.)
Path 2: System and Hardware Optimization

- Goal: Optimize system configurations & hardware to enhance performance.
- To do:

- Tuning CPU/GPU configuration.
- Tweak Linux kernel parameters, furthering optimize performance.



Pruning
Removes less important weights or connections in a neural network to reduce 
complexity while retaining accuracy.

Why?

1. Reduces model size.
2. Speeds up inference.
3. Saves memory and energy.



How Pruning Works?

Train the model 
to learn 
weights

Identify 
unimportant 

weights

Remove 
weights and 

retrain 
(fine-tuning)

Validate and 
test the pruned 

model



Quantization
Reduces the precision of model weights and activations from 32-bit floating-point 
to lower precision, such as 8-bit integers.

Why?

1. Reduces model size (up to 4x smaller).
2. Accelerates inference on specialized hardware (e.g., GPUs, TPUs, and FPGAs).
3. Lowers memory and energy requirements.



Other Methods (Path 1)
- Mixed Precision Training:

- Uses 16-bit floating-point arithmetic on compatible GPUs for faster 
training.

- Accelerated Linear Algebra (XLA):
- Just-In-Time (JIT) compilation to optimize computational graphs.

- Efficient Data Pipelines:
- Using tf.data for optimized data handling.

- Early Stopping:
- Halts training if validation loss stagnates to prevent overfitting and save 

computation.
- All implemented via Tensorflow and Tensorflow Model Optimization Toolkit 

(TF-MOT)



Path 2 Methods
- Tuning CPU Configuration:

- CPU Frequency Scaling: Setting CPU to “performance” mode (~3.7 GHz) 
vs. “powersave.”

- Linux Kernel Parameter Tweaking: Further optimization performance
- Workload Scheduling: Leveraging cgroups.
- Thermal Management: Using a PID-controlled fan script to cap GPU 

temperatures at 85 degrees C.



Results
Phase 1: Data Collection & Baseline Testing



Speed (Phase 1)



Speed (Phase 2)



Thermal Temperature



Full Graph



Full Graph (Phase 2)



Discussio
n



Key Findings
- Software optimization (pruning, quantization) significantly reduced 

model size and training time
- Hardware tuning enhances thermal stability and efficiency.
- Framework scalable to larger models.
- Limitations:

- Mixed precision requires compatible GPUs; high sparsity needs 
fine-tuning.

- Future Work:
- Dynamic scheduling, quantization-aware training, multi-node 

systems.



Key Findings (cont.)
- Achievements:

- Reduction in CNN training time
- Model size compression
- Thermal improvement
- Blueprint for efficient AI processor design

- Impact:
- Scalable framework for data centers and edge computing, advancing 

sustainable AI deployment.



Dr. Shane Torbert for mentorship

The TJHSST Computer Systems Lab and Sysadmins 
for resources

Peers for feedback and support

Acknowledgements



Questions
?Project Website:

https://heliothon.github.io/heliot
hon-website

https://heliothon.github.io/heliothon-website
https://heliothon.github.io/heliothon-website

